
A Simple Guide to Retrieval Augmented Generation
Falha ao colocar no Carrinho.
Falha ao adicionar à Lista de Desejos.
Falha ao remover da Lista de Desejos
Falha ao adicionar à Biblioteca
Falha ao seguir podcast
Falha ao parar de seguir podcast
Assine e ganhe 30% de desconto neste título
R$ 19,90 /mês
Compre agora por R$ 51,99
Nenhum método de pagamento padrão foi selecionado.
Pedimos desculpas. Não podemos vender este produto com o método de pagamento selecionado
-
Narrado por:
-
Christopher Kendrick
-
De:
-
Abhinav Kimothi
Sobre este áudio
Everything you need to know about Retrieval Augmented Generation in one human-friendly guide.
Augmented Generation (or RAG) enhances an LLM’s available data by adding context from an external knowledge base, so it can answer accurately about proprietary content, recent information, and even live conversations. RAG is powerful, and with A Simple Guide to Retrieval Augmented Generation, it’s also easy to understand and implement!
In A Simple Guide to Retrieval Augmented Generation you’ll learn:
The components of a RAG system
How to create a RAG knowledge base
The indexing and generation pipeline
Evaluating a RAG system
Advanced RAG strategies
RAG tools, technologies, and frameworks
A Simple Guide to Retrieval Augmented Generation gives an easy, yet comprehensive, introduction to RAG for AI beginners. You’ll go from basic RAG that uses indexing and generation pipelines, to modular RAG and multimodal data from images, spreadsheets, and more.
About the Book
A Simple Guide to Retrieval Augmented Generation is a plain-English guide to RAG. The book is easy to follow and packed with realistic Python code examples. It takes you concept-by-concept from your first steps with RAG to advanced approaches, exploring how tools like LangChain and Python libraries make RAG easy. And to make sure you really understand how RAG works, you’ll build a complete system yourself, even if you’re new to AI!
About the Author
Abhinav Kimothi is a seasoned data and AI professional. He has spent over 15 years in consulting and leadership roles in data science, machine learning and AI, and currently works as a Director of Data Science at Sigmoid.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.
©2025 Manning Publications (P)2025 Manning Publications