
Navigating Common Pitfalls in Data Science: Lessons from Pierpaolo Hipolito - ML 183
Falha ao colocar no Carrinho.
Tente novamente mais tarde
Falha ao adicionar à Lista de Desejos.
Tente novamente mais tarde
Falha ao remover da Lista de Desejos
Tente novamente mais tarde
Falha ao adicionar à Biblioteca
Tente outra vez
Falha ao seguir podcast
Tente outra vez
Falha ao parar de seguir podcast
Tente outra vez
-
Narrado por:
-
De:
Sobre este áudio
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
O que os ouvintes dizem sobre Navigating Common Pitfalls in Data Science: Lessons from Pierpaolo Hipolito - ML 183
Nota média dos ouvintes. Apenas ouvintes que tiverem escutado o título podem escrever avaliações.Avaliações - Selecione as abas abaixo para mudar a fonte das avaliações.
Nenhuma revisão disponível