Osteomyelitis Podcast Por  capa

Osteomyelitis

Osteomyelitis

Ouça grátis

Ver detalhes do programa

Sobre este título

Osteomyelitis in children is common enough to miss and serious enough to matter. In this episode of PEM Currents, we review a practical, evidence-based approach to pediatric acute hematogenous osteomyelitis, focusing on diagnostic strategy, imaging decisions including FAST MRI, and modern antibiotic management. Topics include age-based microbiology, empiric and pathogen-directed antibiotic selection with dosing, criteria for early transition to oral therapy, and indications for orthopedic and infectious diseases consultation. Special considerations such as MRSA, Kingella kingae, daycare clustering, and shortened treatment durations are discussed with an emphasis on safe, high-value care. Learning Objectives After listening to this episode, learners will be able to: Identify the key clinical, laboratory, and imaging findings that support the diagnosis of acute hematogenous osteomyelitis in children, including indications for FAST MRI and contrast-enhanced MRI. Select and dose appropriate empiric and pathogen-directed antibiotic regimens for pediatric osteomyelitis based on patient age, illness severity, and local MRSA prevalence, and determine when early transition to oral therapy is appropriate. Determine when consultation with orthopedics and infectious diseases is indicated, and recognize clinical features that warrant prolonged therapy or more conservative management. References Woods CR, Bradley JS, Chatterjee A, et al. Clinical practice guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 guideline on diagnosis and management of acute hematogenous osteomyelitis in pediatrics. J Pediatric Infect Dis Soc. 2021;10(8):801-844. doi:10.1093/jpids/piab027 Woods CR, Bradley JS, Chatterjee A, et al. Clinical practice guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2023 guideline on diagnosis and management of acute bacterial arthritis in pediatrics. J Pediatric Infect Dis Soc. 2024;13(1):1-59. doi:10.1093/jpids/piad089 Stephan AM, Platt S, Levine DA, et al. A novel risk score to guide the evaluation of acute hematogenous osteomyelitis in children. Pediatrics. 2024;153(1):e2023063153. doi:10.1542/peds.2023-063153 Alhinai Z, Elahi M, Park S, et al. Prediction of adverse outcomes in pediatric acute hematogenous osteomyelitis. Clin Infect Dis. 2020;71(9):e454-e464. doi:10.1093/cid/ciaa211 Burns JD, Upasani VV, Bastrom TP, et al. Age and C-reactive protein associated with improved tissue pathogen identification in children with blood culture-negative osteomyelitis: results from the CORTICES multicenter database. J Pediatr Orthop. 2023;43(8):e603-e607. doi:10.1097/BPO.0000000000002448 Peltola H, Pääkkönen M. Acute osteomyelitis in children. N Engl J Med. 2014;370(4):352-360. doi:10.1056/NEJMra1213956 Transcript This transcript was provided via use of the Descript AI application Welcome to PEM Currents, the Pediatric Emergency Medicine Podcast. As always, I’m your host, Brad Sobolewski, and today we’re covering osteomyelitis in children. We’re going to talk about diagnosis and imaging, and then spend most of our time where practice variation still exists: antibiotic selection, dosing, duration, and the evidence supporting early transition to oral therapy. We’ll also talk about when to involve orthopedics, infectious diseases, and whether daycare outbreaks of osteomyelitis are actually a thing. So what do I mean by pediatric osteomyelitis? In children, osteomyelitis is most commonly acute hematogenous osteomyelitis. That means bacteria seed the bone via the bloodstream. The metaphysis of long bones is particularly vulnerable due to vascular anatomy that favors bacterial deposition. Age matters. In neonates, transphyseal vessels allow infection to cross into joints, increasing the risk of concomitant septic arthritis. In older children, those vessels involute, and infection tends to remain metaphyseal and confined to bone rather than spreading into the joint. For children three months of age and older, empiric therapy must primarily cover Staphylococcus aureus, which remains the dominant pathogen. Other common organisms include group A streptococcus and Streptococcus pneumoniae. In children six to 36 months of age, especially those in daycare, Kingella kingae is an important and often underrecognized pathogen. Kingella infections are typically milder, may present with lower inflammatory markers, and frequently yield negative routine cultures. Kingella is usually susceptible to beta-lactams like cefazolin, but is consistently resistant to vancomycin and often resistant to clindamycin and antistaphylococcal penicillins. This has direct implications for empiric antibiotic selection. Common clinical features of osteomyelitis include fever, localized bone pain, refusal to bear weight, and pain with movement of an adjacent joint. Fever may be absent early, particularly with less virulent ...
Ainda não há avaliações