Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39 Podcast Por  capa

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

Ouça grátis

Ver detalhes do programa

Sobre este áudio

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.

Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

O que os ouvintes dizem sobre Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

Nota média dos ouvintes. Apenas ouvintes que tiverem escutado o título podem escrever avaliações.

Avaliações - Selecione as abas abaixo para mudar a fonte das avaliações.