
Reward Models | Data Brew | Episode 40
Falha ao colocar no Carrinho.
Falha ao adicionar à Lista de Desejos.
Falha ao remover da Lista de Desejos
Falha ao adicionar à Biblioteca
Falha ao seguir podcast
Falha ao parar de seguir podcast
-
Narrado por:
-
De:
Sobre este áudio
In this episode, Brandon Cui, Research Scientist at MosaicML and Databricks, dives into cutting-edge advancements in AI model optimization, focusing on Reward Models and Reinforcement Learning from Human Feedback (RLHF).
Highlights include:
- How synthetic data and RLHF enable fine-tuning models to generate preferred outcomes.
- Techniques like Policy Proximal Optimization (PPO) and Direct Preference
Optimization (DPO) for enhancing response quality.
- The role of reward models in improving coding, math, reasoning, and other NLP tasks.
Connect with Brandon Cui:
https://www.linkedin.com/in/bcui19/